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Wave kinematic �elds from the boundary integral method

Rodney J. Sobey∗;†

Department of Civil and Environmental Engineering; Imperial College London; London SW72AZ; U.K.

SUMMARY

The predictive potential of interior domain solutions from the boundary integral method for 2D extreme
wave kinematics is explored. Comparisons with analytical solutions for near-limit waves con�rms the
susceptibility of the boundary integral method to poor precision at near-boundary locations. Addition-
ally, these comparisons identify a domain-wide precision challenge that is associated with the relatively
rapid changes in water surface geometry and kinematics that are typical of extreme waves. A numerical
evaluation of Green’s integral around the boundary addresses these precision issues through formula-
tion of the integration as a simultaneous system of ordinary di�erential equations at a cubic level of
approximation. Careful attention is given to consistent interpolation of all contributions to the Green’s
integral. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: boundary integral method; extreme waves; numerical code; potential �ow; unsteady
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1. INTRODUCTION

Highly accurate solutions for the kinematics in extreme but regular waves in two space
dimensions have been routine for several decades through analytical Stokes and cnoidal wave
theories and the hybrid analytical-numerical Fourier approximation wave theory. But equiva-
lent precision in the prediction of the kinematics in extreme but irregular waves has been a
somewhat illusive objective.
The boundary integral method has long promised resolution of these di�culties. Existing

codes have promised much, but have yet to demonstrate that they extend to the more extreme
wave events.
The ultimate objective here is the investigation of the kinematics in 2D extreme waves.

Nonlinear wave theory is being pushed to its limits. The mathematical physics must not be
compromised at any step of the numerical solution. Numerical precision is imperative.
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There are two separate and sequential problems in application of the boundary integral
method to the prediction of wave kinematics:

(I) Solution for the unsteady evolution of the boundary kinematics, the boundary location
(x; z), the velocity potential function � and the outward normal gradient @�=@n of the
velocity potential function, at the boundary of the solution domain.

(II) Solution for the complete kinematics, in this case just the velocity potential function
�, throughout the interior of the solution domain.

The interior problem II is the easier problem, but the interdependence is important. The
boundary problem I requires solution for � around the boundary of the solution domain. The
interior problem II requires solution for � throughout the interior of the solution domain, which
includes locations immediately adjacent to the boundary. For consistent precision, parallel
algorithms are adopted for both problems. If this algorithm is in any way unsatisfactory for
the interior problem, the di�culties will be compounded in the boundary problem, where
evolution of the water surface is driven by the nonlinear boundary kinematics.
Attention is speci�cally directed to locations immediately adjacent to the boundaries, for a

number of reasons:

1. The wave kinematics (velocities, accelerations, etc.) are most extreme at and near to the
water surface.

2. The unique nature of a particular solution �eld is mostly driven by the lateral boundaries,
which provide the essential boundary forcing (incident wave conditions, wave maker,
coastal structure, sea wall, shoaling beach, etc.).

3. Nodal interpolation and hence numerical precision is often weakest at and near the
boundaries.

Attention is directed to the interior problem II, the prediction of the interior kinematics in a
wave tank (x; z) geometry. The ultimate need to accommodate a wave basin (x; y; z) geometry
is acknowledged, but many of the crucial issues must �rst be resolved and proven for the
geometrically simpler wave tank. Subsequent extension to a wave basin would involve a more
complicated geometry and very signi�cantly additional computational resources, but no new
�uid mechanic challenges.
Literature attention to the interior problem II is sparse. There has been steady progress for

the related boundary problem II, initiated by Longuet-Higgins and Cokelet [1] with further
contributions, among others, from References [2–5]. Reference [6] is a useful review paper on
the numerical wave tank problem, the boundary problem II. To date, Reference [7] is perhaps
the most comprehensive extension to 3 spatial dimensions, though again attention does not
extend to the interior problem.

2. BOUNDARY INTEGRAL METHOD

The basis of the boundary integral method is a closed (x; z) domain (Figure 1) in which the
kinematics follow the Laplace equation

@2�
@x2

+
@2�
@z2

= 0 (1)
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,

Figure 1. Solution domain.

where �(x; z; t) is the velocity potential function in spatial coordinates x horizontal and z
vertical and t is time. If the function G(x; z; t) also satis�es the Laplace Equation (1) over
the same domain, then Green’s theorem [8] requires that∫

S

(
�
@G
@n

−G@�
@n

)
ds=0 (2)

over the boundary S of the closed domain. The boundary S is described by orthogonal curvi-
linear (s; n) coordinates (see Figure 1); s is directed anti-clockwise around the closed boundary
so that n is the outwardly-directed normal.
If G= ln r, where r is measured from any point P within S to the domain boundary at

Q, then

−�P�P=
∫
S

(
�
1
r
@r
@n

− ln r @�
@n

)
ds=GB +GC (3)

where �p is the angle surrounding P and wholly within the domain S. For an interior point,
�P=2�. For the boundary problem I, P is located on the boundary and �P �=2�.
Time t does not appear explicitly in Equation (3), but steady �ow is not assumed. Equa-

tion (3) de�nes the instantaneous kinematics. The time-dependence and the non-linearity enter
through the boundary conditions, which de�ne the instantaneous (x; z) location of the boundary
and the instantaneous value of either � or @�=@n at the boundary.
Numerical implementation of the boundary integral method is based, in principle, on Equa-

tion (3), with P located at discrete nodal points on the boundary S for problem I and inside
the boundary for problem II. For problem II, the boundary variables, � and @�=@n at the
boundary nodes, are known for each boundary location, and the problem is linear.
A major di�culty is identi�ed in Equation (3) for near boundary nodes where r becomes

very small. There are singularities where r=0; 1=r → ∞ in the �rst part (GB) of the integrand
and − ln(r) → ∞ in the second part (GC). r is never zero for problem II but it can be very
near zero. For r near zero, both of these contributions become very large. As 1=r approaches ∞
much more rapidly than − ln(r), it is advantageous to adopt the identity (1=r)(@r=@n)=d�=ds
in the GB part, following Reference [1]. The GB term can be rewritten as

GB=
∫
S
�
1
r
@r
@n
ds=

∫
S
�
d�
ds
ds (4)

Conveniently, the d�=ds contribution remains �nite and continuous.
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For the GC integral in the interior of the domain, − ln(r) becomes large quite slowly and
r does not reach zero. The GC or @�=@n part of Green’s integral is smooth and continuous
over a boundary segment.
Summarizing, the Green’s integral in the interior may be written as

−2��P=GB +GC =
∫
S
�
d�
ds
ds−

∫
S
ln r

@�
@n
ds (5)

Equation (5) remains exact. The speci�c context, kinematics in extreme waves, pushes
nonlinear wave theory to its limits. Fidelity in the numerical implementation is important, in
not succumbing to compromise in the choice of algorithms and in the code implementation.

3. NUMERICAL EVALUATION OF GREEN’S INTEGRAL

The boundary of the solution domain (see Figure 2) is identi�ed as segments between geo-
metric discontinuities at corners, there being kS =1 : : : K such segments. Each segment extends
over nodes j= jF(kS) : : : jL(kS), from the �rst node jF to the last node jL.
Integration on the right-hand side of Equation (5) becomes the summation over consecutive

inter-nodal intervals

−2��P=
K∑
kS=1

jL(kS )−1∑
j=jF (kS )

(�GB|iP ; j +�GC |iP ; j) (6)

where the inter-nodal integrands are

�GB|iP ; j=
∫ sj+1

sj
�
d�
ds
ds; �GC |iP ; j= −

∫ sj+1

sj
ln(r)

@�
@n
ds (7)

where iP is the unique internal node location of P. Equation (6) is still exact.
Speci�c evaluation of the de�nite integrals in Equation (7) requires local interpolation

between nodes. All numerical methods (�nite di�erence, �nite element, etc.) must adopt some
manner of local interpolation. The potential for compromise is introduced in the numerical
evaluation of the inter-nodal integrations in Equation (7), through the nature of the local
interpolation and through the manner of integration.
In most cases the e�ective interpolation is polynomial, locally linear, quadratic, : : : cor-

responding to �rst, second, : : : order local approximations. The following discussion adopts
locally cubic interpolation, the dependent variable f(=� or @�=@n) being:

f(s)=f0 + f1s+ f2s2 + f3s3 (8)

where s is the dependent variable around the boundary of the domain (Figure 1). The locally-
constant coe�cients f0 : : : f3 are evaluated uniquely from the consecutive nodal locations sj−1,
sj, sj+1, sj+2 and the local f(s) values at these consecutive nodes. Inter-nodal integration is
over the two central nodes, from sj to sj+1.
Evaluation of the Green’s integral, Equation (7), requires the curvilinear boundary coordi-

nate sj and the angle �j at each of the boundary nodes. Each node is speci�ed by its Cartesian
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Figure 2. Numerical solution domain.

coordinates (xj; zj). Viewing the nodal index j as a monotonically-increasing real variable,
sj may be determined from the calculus identity

ds
dj
=

√(
dx
dj

)2
+

(
dz
dj

)2
(9)

and numerical integration with initial conditions s=0 at j=1 (see Figure 2). Numerically
exact precision, consistent with that sought in the evaluation of the Green’s integral, is ap-
proached by adopting an error-correcting, adaptive step size ordinary di�erential equation
(ODE) solver [9], with the gradients dx=dj and dz=dj predicted from cubic spline interpola-
tion from the discrete coordinate pairs (j; xj) and (j; zj), respectively. Note that cubic spline
interpolation is consistent with Equation (8) local interpolation for � or @�=@n.
Some care is necessary in the evaluation of � at the boundary nodes. Given the location

of P, at (xP; zP), the angle �j at the node j is

�j= arctan
zj − zP
xj − xP (10)

The angle � rotates through a full 2�, with the arctan function providing � in the range
−�6�¡�. For j positive in the counter-clockwise direction (Figure 1), � will pass through a
� to −� discontinuity over at least one of the boundary segments. For extreme wave pro�les
and P located near the water surface, multiple crossings through this � to −� discontinuity
are possible. At some locations, � may reverse and reverse again through this discontinuity.
The GB part of Equations (5) and (7) requires that � remains continuous. It requires phase

unwrapping, to continuous � values beyond the � to −� limits of the arctan function. Where
the progression �j−1 to �j passes through the � to −� discontinuity, 2� is added to �j from
Equation (10). If these adjustments are made at sequential j nodes around the boundary in
the positive counter-clockwise direction, multiple crossings are accommodated.
Two algorithms are introduced for numerical completion of the �GB and �GB local inte-

grals. The �rst, algorithm A, is broadly representative of common �nite element practice [3, 4]
for the boundary integral method in water waves, except that the element integrations are com-
pleted analytically rather than numerically. Detailed evaluation in the context of moderately
extreme steady water waves demonstrates the utility of this common approach throughout the
interior of the solution domain. But there are residual di�culties very close to the domain
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boundaries, just those regions identi�ed in the introduction as physically and numerically
sensitive.
The second, algorithm B, builds on this experience to identify the source of numerical

imprecision near the boundary and to introduce a methodology that resolves this di�culty.
There is one over-riding constraint on these and any alternative algorithm for the interior

problem II. The algorithm must be suitable for implementation in the boundary problem I,
where Green’s integral (Equation (3)) must be evaluated for point P on the boundary. In
the boundary problem context, either � or @�=@n is unknown at the boundary nodes. Only
one of these is a known boundary condition, and the choice will change with the boundary
segment. This constraint translates into a requirement that a suitable algorithm must not assume
that either � or @�=@n are known at the boundary nodes in the numerical evaluation of
Equation (7).

4. ALGORITHM A

Algorithm A writes Equation (5), without approximation, as

−2��P=GB +GC =
∫
S
�(�) d� −

∫
S
ln r

@�
@n
ds (11)

Equation (6) remains formally unchanged, with the nodal integrands, Equation (7), becoming

�GB|iP ; j=
∫ �j+1

�j
� d�; �GC |iP ; j= −

∫ sj+1

sj
ln(r)

@�
@n
ds (12)

Algorithm A introduces the presumably consistent assumptions that

1. �(�) between boundary nodes follows Equation (8) in � rather than s;
2. ln(r(s)) in GC is available at the same boundary nodes as � or @�=@n, and;
3. interpolation of ln(r(s)) between boundary nodes again follows Equation (8) in s.

With cubic interpolation for �(�), the �rst term in Equation (12) may be evaluated ana-
lytically. Conveniently, the result can be written as the linear sum

�GB|iP ; j= biP; j−1�j−1 + biP; j�j + biP; j+1�j+1 + biP; j+2�j+2 (13)

The coe�cients biP; j−1 through biP; j+2 are relatively simple algebraic functions of the known
location of P and the known �iP; j−1 through �iP; j+2 at boundary nodes j − 1 through j + 2.
They do not require that � be known at the boundary nodes. Equation (13) respects the
constraint that neither � nor @�=@n be known in advance at the boundary nodes.
With cubic interpolation for @�=@n|(s) and for ln r|(s), the second term in Equation (12)

may also be evaluated analytically. Conveniently, this result can also be written as the linear
sum

�GC |iP ; j= ciP; j−1
@�
@n

|j−1 + ciP; j
@�
@n

|j + ciP; j+1
@�
@n

|j+1 + ciP; j+2
@�
@n

|j+2 (14)

The coe�cients ciP; j−1 through ciP; j+2 are moderately complicated algebraic functions of the
known location of P and the known sj−1 through sj+2 at boundary nodes j − 1 through
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j+2. The coe�cients were determined by computer algebra. Equation (14) also respects the
constraint that neither � nor @�=@n be known in advance at the boundary nodes.
Note that local analytical integration is possible in evaluation of all parts of Equation (7)

inter-nodal integration. The same procedure is followed for starting inter-nodal integrals (inte-
gration from sjF to sjF+1) over a segment, and for concluding inter-nodal integrals (integration
from sjL−1 to sjL) over a segment. Beyond the local cubic interpolation for �, @�=@n, � and
ln r, there are no further assumptions in the evaluation of the Green’s integral, the right-hand
side of Equation (11).
In �nite element practice, it is common to complete both de�nite integrals in Equation (12)

by Gaussian quadrature [10, Section 25.4.29-30]. m-point Gaussian quadrature is exact for
polynomial integrands of order 2m or less. The contributions to Equation (12) would require
2-point and 3-point Gaussian quadrature, respectively, to match analytical intergration.

5. EXACT KINEMATICS FOR EVALUATION

Three test problems are formulated, each with exact kinematics available for comparison.
The �rst is a steady �ow problem in a wedge-shaped domain. The solution domain is

shown in Figure 3. The domain extends over the �rst quadrant with radius 1m. The velocity
potential function is assigned as

�(x)= − 0:5 + x (15)

so that the Cartesian velocity components are (@�=@x; @�=@z)= (1; 0) m=s.
There are three distinct boundary segments, segment 1 along the x-axis from (0; 0) to

(1; 0), segment 2 along the constant radius arc from (1; 0) to (0; 1), and segment 3 along the
z-axis from (0; 1) back to (0; 0). There are ten equal steps along each boundary segment, with
spacing 0:1 along segments 1 and 3 and �=20 along segment 2. There are double nodes at

0 0.5 1

0

0.2

0.4

0.6

0.8

1

x [m]

z 
[m

]

Figure 3. Solution domain for steady �ow in open wedge.
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Table I. Sample near-limit waves.

Category h (m) H (m) T (s) !2h=g H=HLimit

(I) Shallow 2 1.5 10 0.08 0.95
(II) Deep 100 25 10 4.02 0.96

0 10 20 30 40 50 60 70

0

0.5

1

1.5

x [m]

z 
[m

]

Figure 4. Solution domain for shallow water wave I.

each of the three boundary corners, to accommodate the @�=@n discontinuity at the corners.
� remains continuous across the double corner nodes. At each boundary node, both � and
@�=@n are speci�ed, consistent with Equation (15).
The second and third problems are much more demanding. They are near-limit waves,

the details being listed in Table I. Wave I is in shallow water, Wave II in deep water.
Both are within 5% of the limit wave height, HLimit, suggested by the Reference [11] tables.
Time t is zero in both cases, h is the water depth, H is the wave height, T is the wave
period, !=2�=T is the wave frequency and g is the gravitational acceleration. Boundary
integral method solutions will be evaluated against steady water wave kinematics from Fourier
approximation wave theory [12].
The solution domain for shallow water wave I is shown in Figure 4. The domain extends

over −L=3¡x¡4L=3, including two crests; L is the wavelength. The space step along the
boundary is uniform at �x=L=30 in the x direction. It is also uniform in the z direction
from the bed to the local water surface at approximately the same magnitude. From a visual
perspective, this resolution is su�cient at all locations except perhaps at the wave crests, an
issue to which attention will return.
There are four distinct boundary segments, segment 1 along the bed at z= − h from

x= − L=3 to x=4L=3, segment 2 along the right-hand boundary at x=4L=3 from z= − h
to z= �(4L=3; t), segment 3 along the water surface from (x=4L=3; z= �(4L=3; t)) to (x=
− L=3; z= �(−L=3; t)) and segment 4 at x= − L=3 from z= �(−L=3; t) back to z= − h. At
each boundary node, both � and @�=@n are speci�ed from Fourier approximation wave theory.
@�=@n is routinely available from the (u; w) velocity component at the boundary nodes and
the local boundary orientation. The velocity potential function � is not routinely available
from Fourier approximation wave theory, where the stream function � in the steady frame is
a dependent variable.
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Figure 5. Solution domain for deep water wave II.

In Fourier approximation wave theory [12], the stream function � in the steady frame is

�(X; z)= − �U (h+ z) +
g2

!3
N∑
j=1
Bj
sinh jk(h+ z)
cosh jkh

cos jkX (16)

where Bj are the dimensionless Fourier coe�cients, of which there are N . X = x − Ct is the
horizontal spatial coordinate in the steady frame moving at the phase speed C;− �U is the
current in the steady frame and k=2�=L is the wave number. As both the velocity potential
function and the stream function must satisfy the Laplace equation, the velocity potential
function in the steady frame is

�(X; z)= − �UX +
g2

!3
N∑
j=1
Bj
cosh jk(h+ z)
cosh jkh

sin jkX (17)

In the unsteady frame, the velocity potential function is

�(x; z; t)=�(x − Ct; z) + Cx (18)

There are double nodes at each of the four boundary corners, to accommodate the @�=@n
discontinuity at the corners. � remains continuous across the double corner nodes.
The solution domain for deep water wave II is shown in Figure 5.

6. ALGORITHM A AND EXACT KINEMATICS

For the open wedge domain, numerical solutions were computed for selected horizontal and
vertical pro�les. Horizontal pro�les were computed at z=0:5; 0:1 and 0:01 m. The computa-
tional points were uniformly distributed over the available x pro�le length, with additional
near boundary points at 0:1�x, 0:2�x and 0:5�x from the boundary at both ends. The vertical
pro�les were computed at x=0:01; 0:1 and 0:5 m, with computational points distributed over
the available z pro�le length in an analogous manner.
Figure 6 shows the horizontal pro�les of �(x; z; t) for the exact solution from Equation (15)

(solid line) and for the numerical solution from algorithm A (x marker, with dotted line).
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Figure 6. Horizontal pro�les for steady �ow in open wedge: (a) z = 0:5 m;
(b) z = 0:1 m; and (c) z = 0:01 m.

Figures 6(a) and (b) demonstrate a response for Algorithm A that approaches acceptability for
�eld locations somewhat distant from the boundary. This is a consistently reproducible result,
that the precision of interior solutions su�ciently distant from the boundary is satisfactory.
But near-boundary solutions are not acceptable. Figure 6(c), 0:01m inside the lower domain

boundary has oscillations of very signi�cant magnitude about the analytical solution, going
o�-scale at the left and right boundaries. Figures 6(a) and (b) mirror this pattern near the right-
hand boundary. This poor precision at near-boundary locations is perhaps widely recognized,
but not at all widely acknowledged in the literature. Figure 4 in Reference [13] is a notable
exception.
Figure 7 shows the vertical pro�les of �(z; x; t) for the exact solution from Equation (15)

(solid line) and for the numerical solution from algorithm A (x marker, with dotted line). A
similar response pattern is repeated. There are upper and lower boundary errors from algorithm
A at all locations, and oscillations throughout for the pro�le at x=0:01 m, very close to the
left-hand domain boundary. Distant from the boundary, algorithm A predictions are acceptable.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:773–790



WAVE KINEMATIC FIELDS FROM THE BOUNDARY INTEGRAL METHOD 783

0 0.1

0.2

0.4

0.6

0.8

x=0.01 x=0.1 [m] x=0.5 [m]

φ(z;x) [m2/s]

z 
[m

]

Algorithm A
Algorithm B
Theoretical

Figure 7. Vertical pro�les for steady �ow in open wedge.

For the near-limit waves, numerical solutions were computed for selected near-surface lon-
gitudinal pro�les and for selected vertical pro�les. For the near-surface longitudinal pro�les,
numerical solutions were sought at z= �(x; t) − 0:01H , �(x; t) − 0:1H and �(x; t) − 0:5H , re-
spectively. The x locations were on a uniform grid of spacing �x=(5L=3)=20, supplemented
by locations at −L=3 + 0:01�x, −L=3 + 0:1�x and −L=3 + 0:5�x at the left-hand end and
locations at 4L=3− 0:5�x, 4L=3− 0:1�x and 4L=3− 0:01�x at the right-hand end. The �ner
resolution at the left and right boundaries were intended to capture the near-boundary response
at the left and right vertical boundary segments, respectively.
Figure 8 shows the near-surface longitudinal pro�les of �(x; z; t) for the exact solution from

Fourier wave theory (solid line) and for the numerical solution from algorithm A (x marker,
with dotted line). Figure 8(c), distant from the boundary, does approach the analytical solution
in parts. But an observation from the open wedge solutions, that precision of algorithm A
interior solutions su�ciently distant from the boundary is satisfactory, is not appropriate for
this near-limit wave example.
Figure 8(a), 0:01H below the water surface has oscillations of very signi�cant magnitude

(some o�-scale) about the analytical solution. These are reduced in Figure 8(b), at 0:1H be-
low the water surface, and further reduced in Figure 8(c), at 0:5H below the water surface.
There are also very signi�cant o�-scale errors near both the left- and right-hand boundaries.
The crucial role of the water surface in extreme wave kinematics and the lateral boundaries
in wave forcing was highlighted in the introduction, together with concerns over numerical
precision at just these locations. The Figure 8 result con�rms that numerical �delity at
near-boundary locations is a core issue in application of the boundary integral method to
extreme wave kinematics.
Figure 8(b) demonstrates one further concern. Note in particular the relatively poor

response around x=0 and x=L (L=52:7 m for shallow water wave I). These locations
(see Figure 4) correspond to the wave crest where both � and especially @�=@n are rapidly
varying with s. Adequate resolution of rapidly changing segments of the boundary conditions
is a routine requirement of the problem formulation. Marginal resolution may be recovered
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Figure 8. Near-surface longitudinal pro�les for shallow water wave I: (a) z = � − 0:01H ;
(b) z = �− 0:1H ; and (c) z = �− 0:5H .

by the implicit boundary interpolation, but this is not guaranteed. This result corresponds with
a visual appreciation of the Figure 4 solution domain—boundary resolution seems adequate
at all locations with the possible exception of the neighbourhood of the two wave crests.
While enhanced spatial resolution around the crests may improve the response around x=0
and x=L in Figure 8(b), it will have little impact on the overall near boundary response.
Figure 9, also for shallow water wave I, shows vertical pro�les at x=0:1L and at x=0:2L,

for the exact solution from Fourier wave theory (solid line) and for the numerical solution
from algorithm A (x marker, with dotted line). This result is consistent with the near-surface
longitudinal pro�les above. The response for algorithm A is not acceptable near the water
surface and the bed.
Signi�cantly also, numerical precision deteriorates quite markedly in the interior. By a

process of elimination and observation of intermediate numerical results, this lack of �delity
in the interior was attributed to rapid changes in �, � and @�=@n along the water surface.
Figure 10, for deep water wave II, shows the near-surface longitudinal pro�les of �(x; z; t)

for the exact solution from Fourier wave theory (solid line) and for the numerical solution
from algorithm A (x marker, with dotted line). The algorithm A result generally con�rms the
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Figure 9. Vertical pro�les for shallow water wave I.
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Figure 10. Near-surface longitudinal pro�les for deep water wave II: (a) z = � − 0:01H ;
(b) z = �− 0:1H ; and (c) z = �− 0:5H .
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Figure 11. Vertical pro�les for deep water wave II.

observations above for the shallow water wave. Crest sharpening for near-limit waves in deep
water are rather less extreme than for near-limit waves in shallow water, and the algorithm
A numerical solution does much better. It nonetheless remains unacceptable at near-boundary
locations.
Figure 11 shows deep water vertical pro�les at x=0:1L, and at x=0:2L, for the exact

solution from Fourier wave theory (solid line) and for the numerical solution from algorithm
A (x marker, with dotted line). Di�culties are again observed near the water surface and at
the bed. But the less rapid changes in �, � and @�=@n along the water surface for the deep
water wave do not compromise the interior solution to the extent observed in Figure 9.

7. ALGORITHM B

The di�culties encountered with algorithm A, for P near the boundary and for rapid variation
of �, � and @�=@n along the water surface, are strictly geometric. While both xj and zj vary
slowly and smoothly with s or j within a boundary segment, �j will vary slowly and smoothly
with s or j only when P is distant from the boundary and when �, � and @�=@n along the
water surface are not rapidly varied.
Spatial resolution around the boundary is typically assigned in an heuristic manner. Regions

of known physical and=or numerical challenge, such as steep pro�le neighbourhoods, a natural
shoaling bed, a wave maker board, segment corners, etc. must have adequate nodal density to
resolve the more rapid variations. Boundary nodal resolution of su�cient detail to meet these
constraints is assumed. This practice results in satisfactory spatial interpolation for x, z, � and
@�=@n with s or j. Cubic spline interpolation, consistent with Equation (8), has demonstrated
its e�cacy in this context.
But much �ner resolution of the � variation with s or j is necessary. It is appropriate here to

regard j as a real variable, with boundary nodes located at integer values for j. By de�nition,
the boundary coordinate s varies smoothly and monotonically around the boundary. The real
variable j will also vary smoothly and monotonically around the boundary, in parallel with s.
Given a continuous x(j) and z(j) prediction, based on cubic spline interpolation from the

discrete coordinate pairs (j; xj) and (j; zj) at integer j, a very much �ner �(j) resolution
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is available from Equation (10). A j spacing of 0.1 has proved adequate. Given discrete
coordinate pairs (j; �j) at very much �ner resolution, cubic spline interpolation was again
adopted.
The algorithm constraint, that a suitable algorithm must not assume that either � or @�=@n

are known at the boundary nodes, remains.
Algorithm B is based directly on Equation (5), with boundary integration in s for both the

GB and GC contributions. Substituting Equation (8) for �(s), the �GB integral becomes

�GB|iP ; j =
∫ sj+1

sj
(b0 + b1s+ b2s2 + b3s3)

d�
ds
ds

= b0
∫ sj+1

sj

d�
ds
ds+ b1

∫ sj+1

sj
s
d�
ds
ds+ b2

∫ sj+1

sj
s2
d�
ds
ds+ b3

∫ sj+1

sj
s3
d�
ds
ds

= b0B0 + b1B1 + b2B2 + b3B3 (19)

where

B0 =
∫ sj+1

sj

d�
ds
ds=

∫ sj+1

sj
d�=�(j + 1)− �(j) (20a)

B1 =
∫ sj+1

sj
s
d�
ds
ds=

∫ j+1

j
s
d�
dj
dj (20b)

B2 =
∫ sj+1

sj
s2
d�
ds
ds=

∫ j+1

j
s2
d�
dj
dj; B3 =

∫ sj+1

sj
s3
d�
ds
ds=

∫ j+1

j
s3
d�
dj
dj (21)

The coe�cient B0 is de�ned, Equation (20a). B1–B3 are conveniently evaluated through
numerical integration of the simultaneous ordinary di�erential equations

dB1
dj

= s
d�
dj
;
dB2
dj

= s2
d�
dj
;
dB3
dj

= s3
d�
dj

(22)

from j to j + 1, with initial conditions B1 =B2 =B3 = 0 at j. s is available from the simul-
taneous ordinary di�erential Equation (9). x(j), z(j) and �(j) are available as continuous
functions of j from cubic spline interpolation, with � at suitably �ne resolution. The gradients
dx=dj, dz=dj and d�=dj are also available from the same cubic spline algorithms. Note in
particular that numerical integration of Equations (22) requires only that adequately precise
estimates of s and d�=dj at each real j be available. Importantly, there is no restriction on
the manner of their prediction, permitting the mixture of cubic spline interpolation at di�ering
j densities (x and z at integer value of j, � at enhanced resolution) and numerical integration
for s.
The de�nite integrals for B1 (Equation (20b)), B2 and B3 (Equation (21)) might potentially

be completed by Gaussian quadrature but how to assign the appropriate m-point order is
not clear. m would need to be in double digits to achieve the required enhanced resolution
for �. Numerical integration of Equations (22) avoids this issue, through an error-correcting,
adaptive step-size ODE solver.
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As before (Equation (8)), the coe�cients b0–b3 are evaluated uniquely from the local �
value at consecutive nodes sj−1, sj, sj+1, sj+2. With known B0–B3, Equation (19) becomes

�GB|iP ; j= biP; j−1�j−1 + biP; j�j + biP; j+1�j+1 + biP; j+2�j+2 (23)

The coe�cients biP; j−1–biP; j+2 are moderately complicated algebraic functions of the known
location of P, the known sj−1–sj+2 at boundary nodes j−1–j+2, and the known B0–B3. The
coe�cients were determined my computer algebra. Equation (23) respects the constraint that
neither � nor @�=@n be known in advance at the boundary nodes.
Similarly substituting Equation (8) for @�=@n, the �GC integral becomes

�GC |iP ; j =−
∫ sj+1

sj
(c0 + c1s+ c2s2 + c3s3) ln r ds

=−c0
∫ sj+1

sj
ln r ds− c1

∫ sj+1

sj
s ln r ds− c2

∫ sj+1

sj
s2 ln r ds− c3

∫ sj+1

sj
s3 ln r ds

=−c0C0 − c1C1 − c2C2 − c3C3 (24)

where

C0 =
∫ sj+1

sj
ln r ds=

∫ sj+1

sj
ln r

ds
dj
dj; C1 =

∫ sj+1

sj
s ln r ds=

∫ j+1

j
s ln r

ds
dj
dj (25)

C2 =
∫ sj+1

sj
s2 ln r ds=

∫ j+1

j
s2 ln r

ds
dj
dj; C3 =

∫ sj+1

sj
s3 ln r ds=

∫ j+1

j
s3 ln r

ds
dj
dj (26)

The coe�cients C0–C3 are conveniently evaluated through numerical integration of the simul-
taneous ordinary di�erential equations

dC0
dj

= ln r
ds
dj
;
dC1
dj

= s ln r
ds
dj
;
dC2
dj

= s2 ln r
ds
dj
;
dC3
dj

= s3 ln r
ds
dj

(27)

from j to j + 1, with initial conditions C0 =C1 =C2 =C3 = 0 at j. s is available from the
simultaneous ordinary di�erential Equation (9). As before, x(j), z(j), dx=dj, and dz=dj are
available as continuous functions of j from cubic spline interpolation. ds=dj is again available
from the simultaneous ordinary di�erential Equation (9).
As before (Equation (8)), the coe�cients c0–c3 are evaluated uniquely from the local @�=@n

value at consecutive nodes sj−1, sj, sj+1, sj+2. With known C0–C3, Equation (24) becomes

�GC |P= ciP; j−1
@�
@n

|j−1 + ciP; j
@�
@n

|j + ciP; j+1
@�
@n

|j+1 + ciP; j+2
@�
@n

|j+2 (28)

The coe�cients ciP; j−1 through ciP; j+2 are moderately complicated algebraic functions of the
known location of P, the known sj−1 through sj+2 at boundary nodes j−1 through j+2, and
the known C0–C3. The coe�cients were again determined by computer algebra. Equation (14)
also respects the constraint that neither � nor @�=@n be known in advance at the boundary
nodes.
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The simultaneous ODE system, Equations (9), (23) and (28) is numerically integrated by
an error-correcting, adaptive step size ODE solver [9], at precision consistent with that sought
in the evaluation of the Green’s integral.

8. ALGORITHM B AND EXACT KINEMATICS

The algorithm B response patterns have been included (the o markers) in Figures 8–11.
These results are very acceptable. There is a suggestion around x=0 and x=L in Figure 8
for shallow water wave I that nodal resolution around the crests is a little coarse, and this
con�rms the expectation from Figure 4. There is no such concern for the deep water wave II
where nodal resolution around the crests is su�cient.

9. CONCLUSIONS

The predictive capability of the boundary integral method for 2D water wave kinematics in
the interior of a domain has been explored. The test cases are steady �ow in an open wedge
sector and two near-limit waves, respectively, in shallow and deep water. Numerically exact
kinematics is available for each of these test cases.
Algorithm A, generally representative of common �nite element practice at a cubic or-

der, provided the initial evaluation. The expectation that near-boundary locations are a weak
link in the predictive capability of the boundary integral method was con�rmed. Addition-
ally, for near-limit waves, predictions of wave kinematics in the interior of the domain were
unsatisfactory, especially in shallow water.
The source of these wave-kinematic di�culties was traced to relatively rapid spatial wave

oscillations, precisely the situation expected in the prediction of extreme wave kinematics.
These di�culties are geometric in nature and follow from poor resolution of the variation of

the angle � (Figure 1) along the boundary. In the prediction of extreme wave kinematics, these
geometric di�culties are compounded by the rapid spatial oscillations of the water surface,
where � does not always increase monotonically with j, the nodal index anti-clockwise around
the boundary (Figure 2).
Signi�cantly enhanced spatial resolution of �j is essential. The boundary location (xj; zj) is

relatively slowly varying, such that resolution and spatial interpolation has not been a problem.
An order of magnitude better spatial resolution of �j has proved adequate, and this is available
from cubic-spline interpolation of the (xj; zj) boundary locations. Careful attention to phase
unwrapping at the +� to −� discontinuity in the arctan function is crucial, especially where
� does not increase monotonically with j.
Utilization of this enhanced spatial resolution for � required reformulation of the �GB

and �GC boundary integrations as systems of simultaneous ordinary di�erential equations,
Equations (9), (23) and (28). Numerically exact integration follows from classical error-
correcting, adaptive step size ODE code.
These geometric and numerical integration enhancements have been incorporated into

Algorithm B. Excellent predictive capability is demonstrated for near-limit wave kinematics.
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